Coding Bihar

Android App Development

Coding Bihar is dedicated to providing you with the knowledge and tools you need to excel in Android development. Start your journey with us and transform your app ideas into reality with Jetpack Compose. Connect, learn, and grow with Coding Bihar today!

CBSE Math 11 Practice Paper 04

CBSE Math 11 Practice Paper 04 - Coding Bihar

CBSE 11 Mathematics

Practice Paper 04 

1. If x + iy = \(\frac{a + ib}{a - ib}\), prove that \(x^2 + y^2 = 1\).


2. If \(x - iy =\sqrt\frac{a - ib}{c - id}\) prove that \((x^2+y^2)^2=\frac{a^2 + b^2}{c^2 + d^2}\).


3. If \(z_1 = 2 – i, z_2 = 1 + i\), find \(|\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1}|\).

4. Express each of the complex number given in the form a + ib. 

    (a)  \((5i)(\frac{-1}{5} i)\)

    (b)  \(i^9+i^19\)

    (c)  \(i^-39\)

    (d)  \( (\sqrt3+\sqrt-2)\)\((2\sqrt3-i)\)

    (e)  \(\frac{5+\sqrt2 i}{1-\sqrt2 i}\)

5. Find the multiplicative inverse of each of the complex numbers 

    (a)  \(4–3i\) 

    (b)  \(\sqrt5 + 3i\) 

    (c)  \(– i\)

6.  Prove that \(Re(z_1z_2)=Rez_1Rez_2-Imz_1-Imz_2\).

7.  If \((a+ib)^2=x+iy\) Prove that \((a^2+b^2)^2=x^2+y^2\).

8.  Find the value of \(1+i^2 + i^4 + i^6 + i^8 + ---- + i^100\).

9.  Solve for x and y, \(3x + (2x-y) i= 6 – 3i\).

10.  Let \(z_1 = 2 – i, z_2 = -2+i\) Find \(Re \frac{(z_1z_2)}{z_1}\)

11. Find the conjugate and the modulus of each of the following

      (a)  \(3-\sqrt3 i\)

      (b)  \((2+2i)^2\)

      (c)  \(\frac{2+\sqrt3 i}{3-2i}\)

      (d)  \(\frac{4}{3-4i}\)

      (e)  \((3+\sqrt5 i)^2\)

****************End********************
 Sandeep Gupta

Posted by Sandeep Gupta

Please share your feedback us at:sandeep@codingbihar.com. Thank you for being a part of our community!

Special Message

Welcome to coding bihar!