Best Tutorial for Android Jetpack Compose

Android App Development

Stay ahead with the latest tools, trends, and best practices in Android development

CBSE Math 11 Practice Paper 04

CBSE Math 11 Practice Paper 04 - Coding Bihar
CBSE Math 11 Practice Paper 04

CBSE 11 Mathematics

Practice Paper 04 

1. If x + iy = \(\frac{a + ib}{a - ib}\), prove that \(x^2 + y^2 = 1\).


2. If \(x - iy =\sqrt\frac{a - ib}{c - id}\) prove that \((x^2+y^2)^2=\frac{a^2 + b^2}{c^2 + d^2}\).


3. If \(z_1 = 2 – i, z_2 = 1 + i\), find \(|\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1}|\).

4. Express each of the complex number given in the form a + ib. 

    (a)  \((5i)(\frac{-1}{5} i)\)

    (b)  \(i^9+i^19\)

    (c)  \(i^-39\)

    (d)  \( (\sqrt3+\sqrt-2)\)\((2\sqrt3-i)\)

    (e)  \(\frac{5+\sqrt2 i}{1-\sqrt2 i}\)

5. Find the multiplicative inverse of each of the complex numbers 

    (a)  \(4–3i\) 

    (b)  \(\sqrt5 + 3i\) 

    (c)  \(– i\)

6.  Prove that \(Re(z_1z_2)=Rez_1Rez_2-Imz_1-Imz_2\).

7.  If \((a+ib)^2=x+iy\) Prove that \((a^2+b^2)^2=x^2+y^2\).

8.  Find the value of \(1+i^2 + i^4 + i^6 + i^8 + ---- + i^100\).

9.  Solve for x and y, \(3x + (2x-y) i= 6 – 3i\).

10.  Let \(z_1 = 2 – i, z_2 = -2+i\) Find \(Re \frac{(z_1z_2)}{z_1}\)

11. Find the conjugate and the modulus of each of the following

      (a)  \(3-\sqrt3 i\)

      (b)  \((2+2i)^2\)

      (c)  \(\frac{2+\sqrt3 i}{3-2i}\)

      (d)  \(\frac{4}{3-4i}\)

      (e)  \((3+\sqrt5 i)^2\)

****************End********************

Special Message

Welcome to Coding