Best Tutorial for AndroidDevelopers

Android App Development

Stay ahead with the latest tools, trends, and best practices in Android development

CBSE Math 11 Practice Paper 04

CBSE Math 11 Practice Paper 04 - Responsive Blogger Template
CBSE Math 11 Practice Paper 04

CBSE 11 Mathematics

Practice Paper 04 

1. If x + iy = \(\frac{a + ib}{a - ib}\), prove that \(x^2 + y^2 = 1\).


2. If \(x - iy =\sqrt\frac{a - ib}{c - id}\) prove that \((x^2+y^2)^2=\frac{a^2 + b^2}{c^2 + d^2}\).


3. If \(z_1 = 2 – i, z_2 = 1 + i\), find \(|\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1}|\).

4. Express each of the complex number given in the form a + ib. 

    (a)  \((5i)(\frac{-1}{5} i)\)

    (b)  \(i^9+i^19\)

    (c)  \(i^-39\)

    (d)  \( (\sqrt3+\sqrt-2)\)\((2\sqrt3-i)\)

    (e)  \(\frac{5+\sqrt2 i}{1-\sqrt2 i}\)

5. Find the multiplicative inverse of each of the complex numbers 

    (a)  \(4–3i\) 

    (b)  \(\sqrt5 + 3i\) 

    (c)  \(– i\)

6.  Prove that \(Re(z_1z_2)=Rez_1Rez_2-Imz_1-Imz_2\).

7.  If \((a+ib)^2=x+iy\) Prove that \((a^2+b^2)^2=x^2+y^2\).

8.  Find the value of \(1+i^2 + i^4 + i^6 + i^8 + ---- + i^100\).

9.  Solve for x and y, \(3x + (2x-y) i= 6 – 3i\).

10.  Let \(z_1 = 2 – i, z_2 = -2+i\) Find \(Re \frac{(z_1z_2)}{z_1}\)

11. Find the conjugate and the modulus of each of the following

      (a)  \(3-\sqrt3 i\)

      (b)  \((2+2i)^2\)

      (c)  \(\frac{2+\sqrt3 i}{3-2i}\)

      (d)  \(\frac{4}{3-4i}\)

      (e)  \((3+\sqrt5 i)^2\)

****************End********************
Sandeep Kumar - Android Developer

About the Author

Sandeep Kumar is an Android developer and educator who writes beginner-friendly Jetpack Compose tutorials on CodingBihar.com. His focus is on clean UI, Material Design 3, and real-world Android apps.

SkillDedication

— Python High Level Programming Language- Expert-Written Tutorials, Projects, and Tools—

Coding Bihar

Welcome To Coding BiharπŸ‘¨‍🏫