= CBSE 10 Math Trigonometry Practice Paper 08 - Coding Bihar

Best Premium Templates For App and Software Downloading Site. Made By HIVE-Store

Android Jetpack Compose

Stay ahead with the latest tools, trends, and best practices in Android Jetpack Compose App development

CBSE 10 Math Trigonometry Practice Paper 08

CBSE 10 Math Trigonometry Practice Paper 08 - Coding Bihar
CBSE 10 Math Trigonometry Practice Paper 08

CBSE 10 Mathematics Trigonometry Practice Paper 08

1. Given \(tan A = \frac{4} {3}\), find the other trigonometric ratios of the angle A.

2. If \(\angle B\) and \(\angle Q\) are acute angles such that \(sin B = sin Q\), then prove that \(\angle B = \angle Q\).

3. Given \(15 cot A = 8\), find \(sin A\) and \(sec A\).

4. If \(3cot A = 4\), check whether \(\frac{1 - tan^2 A }{1 + tan^2 A }\) =\( cos^2 A - sin^2A\) or not.

5. In ∆ ABC, right-angled at B, AC + BC = 25 cm and AB = 5 cm. Determine the values of \(sin A\), \(cos A\) and \(tan A\).

6. In ∆ PQR, right-angled at Q (see Fig. 8.1), PQ = 3 cm and PR = 6 cm. Determine\(\angle QPR\) and \(\angle PRQ\).

7. Evaluate the following : 

(i) \(sin 60^\circ cos 30^{\circ} + sin 30^\circ cos 60^\circ\) 

(ii) \(2tan^2 45^\circ + cos^2 30^\circ – sin^2 60^\circ\)

8. If \(tan (A + B) =\sqrt 3\) and \(tan (A – B) = \frac{1}{\sqrt3}\); \(0^\circ < A + B ≤ 90^\circ\); A > B, find A and B.

9. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) \((cosec\theta – cot\theta)^2 =\frac {1 - cos}{1 + cos\theta}\) 

(ii) \(\frac{cos A}{1 + sin A}+ \frac{1 + sin A}{cosA}= 2 sec A\)

(iii) \(\frac{tan\theta}{1 - cot\theta}+\frac{cot\theta}{1 - tan\theta} = 1 + sec\theta cosec\theta\)

(iv) \(\frac{1 + secnA}{secA} = \frac{sin^2A }{1 - cosA}\)

(v) \(\frac{cos A – sin A + 1}{cos A + sin A – 1}=cosec A + cot A\), using the identity \(cosec^2 A = 1 + cot^2 A\).

(vi) \(\sqrt{\frac{1 + sinA}{1 – sin A}}=sec A + tan A\) 

(vii) \(\frac{sin\theta - 2sin^3\theta}{2cos^3\theta - cos\theta}=tan\theta\)

(viii) \((sin A + cosec A)^2 + (cos A + sec A)^2\) = 7 + \(tan^2 A + cot^2 A\)

(ix) \((cosec A - sin A)(sec A - cos A)=\frac{1}{tanA + cot A}\)

Topics

Special Message

You Can Show Anything To Your Users