Best Tutorial for Android Jetpack Compose

Android App Development

Stay ahead with the latest tools, trends, and best practices in Android development

CBSE 10 Math Trigonometry Practice Paper 08

CBSE 10 Math Trigonometry Practice Paper 08 - Coding Bihar
CBSE 10 Math Trigonometry Practice Paper 08

CBSE 10 Mathematics Trigonometry Practice Paper 08

1. Given \(tan A = \frac{4} {3}\), find the other trigonometric ratios of the angle A.

2. If \(\angle B\) and \(\angle Q\) are acute angles such that \(sin B = sin Q\), then prove that \(\angle B = \angle Q\).

3. Given \(15 cot A = 8\), find \(sin A\) and \(sec A\).

4. If \(3cot A = 4\), check whether \(\frac{1 - tan^2 A }{1 + tan^2 A }\) =\( cos^2 A - sin^2A\) or not.

5. In ∆ ABC, right-angled at B, AC + BC = 25 cm and AB = 5 cm. Determine the values of \(sin A\), \(cos A\) and \(tan A\).

6. In ∆ PQR, right-angled at Q (see Fig. 8.1), PQ = 3 cm and PR = 6 cm. Determine\(\angle QPR\) and \(\angle PRQ\).

7. Evaluate the following : 

(i) \(sin 60^\circ cos 30^{\circ} + sin 30^\circ cos 60^\circ\) 

(ii) \(2tan^2 45^\circ + cos^2 30^\circ – sin^2 60^\circ\)

8. If \(tan (A + B) =\sqrt 3\) and \(tan (A – B) = \frac{1}{\sqrt3}\); \(0^\circ < A + B ≤ 90^\circ\); A > B, find A and B.

9. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) \((cosec\theta – cot\theta)^2 =\frac {1 - cos}{1 + cos\theta}\) 

(ii) \(\frac{cos A}{1 + sin A}+ \frac{1 + sin A}{cosA}= 2 sec A\)

(iii) \(\frac{tan\theta}{1 - cot\theta}+\frac{cot\theta}{1 - tan\theta} = 1 + sec\theta cosec\theta\)

(iv) \(\frac{1 + secnA}{secA} = \frac{sin^2A }{1 - cosA}\)

(v) \(\frac{cos A – sin A + 1}{cos A + sin A – 1}=cosec A + cot A\), using the identity \(cosec^2 A = 1 + cot^2 A\).

(vi) \(\sqrt{\frac{1 + sinA}{1 – sin A}}=sec A + tan A\) 

(vii) \(\frac{sin\theta - 2sin^3\theta}{2cos^3\theta - cos\theta}=tan\theta\)

(viii) \((sin A + cosec A)^2 + (cos A + sec A)^2\) = 7 + \(tan^2 A + cot^2 A\)

(ix) \((cosec A - sin A)(sec A - cos A)=\frac{1}{tanA + cot A}\)

Special Message

Welcome to Coding