Coding Bihar

Android App Development

Coding Bihar is dedicated to providing you with the knowledge and tools you need to excel in Android development. Start your journey with us and transform your app ideas into reality with Jetpack Compose. Connect, learn, and grow with Coding Bihar today!

CBSE 10 Math Trigonometry Practice Paper 08

CBSE 10 Math Trigonometry Practice Paper 08 - Coding Bihar

CBSE 10 Mathematics Trigonometry Practice Paper 08

1. Given \(tan A = \frac{4} {3}\), find the other trigonometric ratios of the angle A.

2. If \(\angle B\) and \(\angle Q\) are acute angles such that \(sin B = sin Q\), then prove that \(\angle B = \angle Q\).

3. Given \(15 cot A = 8\), find \(sin A\) and \(sec A\).

4. If \(3cot A = 4\), check whether \(\frac{1 - tan^2 A }{1 + tan^2 A }\) =\( cos^2 A - sin^2A\) or not.

5. In ∆ ABC, right-angled at B, AC + BC = 25 cm and AB = 5 cm. Determine the values of \(sin A\), \(cos A\) and \(tan A\).

6. In ∆ PQR, right-angled at Q (see Fig. 8.1), PQ = 3 cm and PR = 6 cm. Determine\(\angle QPR\) and \(\angle PRQ\).

7. Evaluate the following : 

(i) \(sin 60^\circ cos 30^{\circ} + sin 30^\circ cos 60^\circ\) 

(ii) \(2tan^2 45^\circ + cos^2 30^\circ – sin^2 60^\circ\)

8. If \(tan (A + B) =\sqrt 3\) and \(tan (A – B) = \frac{1}{\sqrt3}\); \(0^\circ < A + B ≤ 90^\circ\); A > B, find A and B.

9. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) \((cosec\theta – cot\theta)^2 =\frac {1 - cos}{1 + cos\theta}\) 

(ii) \(\frac{cos A}{1 + sin A}+ \frac{1 + sin A}{cosA}= 2 sec A\)

(iii) \(\frac{tan\theta}{1 - cot\theta}+\frac{cot\theta}{1 - tan\theta} = 1 + sec\theta cosec\theta\)

(iv) \(\frac{1 + secnA}{secA} = \frac{sin^2A }{1 - cosA}\)

(v) \(\frac{cos A – sin A + 1}{cos A + sin A – 1}=cosec A + cot A\), using the identity \(cosec^2 A = 1 + cot^2 A\).

(vi) \(\sqrt{\frac{1 + sinA}{1 – sin A}}=sec A + tan A\) 

(vii) \(\frac{sin\theta - 2sin^3\theta}{2cos^3\theta - cos\theta}=tan\theta\)

(viii) \((sin A + cosec A)^2 + (cos A + sec A)^2\) = 7 + \(tan^2 A + cot^2 A\)

(ix) \((cosec A - sin A)(sec A - cos A)=\frac{1}{tanA + cot A}\)
 Sandeep Gupta

Posted by Sandeep Gupta

Please share your feedback us at:sandeep@codingbihar.com. Thank you for being a part of our community!

Special Message

Welcome to coding bihar!