Coding Bihar

Android App Development

Coding Bihar is dedicated to providing you with the knowledge and tools you need to excel in Android development. Start your journey with us and transform your app ideas into reality with Jetpack Compose. Connect, learn, and grow with Coding Bihar today!

CBSE 11 Limits and Derivatives Practice Paper

CBSE 11 Limits and Derivatives Practice Paper - Coding Bihar
CBSE 11 Math Calculus

CBSE 11 Mathematics Calculus

Limits and Derivatives

1. Find the following limits
        (a) \(\lim\limits_{x\to 1}{\frac{x^{15}-1}{x^{10}-1}}\)                (b)\(\lim\limits_{z\to 0}\frac{\sqrt{1+z}-1}{z}\)
        (c) \(\lim\limits_{x\to 1}{[x^3-x^2+1]}\)       (d)  \(\lim\limits_{x\to 2}{[x(x+2)]}\)
        (e) \(\lim\limits_{x\to 1}{[\frac{x+1}{x+5}]}\)                (f)  \(\lim\limits_{x\to 1}{[\frac{x^3-2x^2+2x}{x^2-2}]}\)

2. For any positive integer n, prove that
    \(\lim\limits_{x\to a}{\frac{x^n-a^n}{x-a}}\)

3. Evaluate

        (a) \(\lim\limits_{x\to 0}{\frac{sin4x}{sin3x}}\)                (b) \(\lim\limits_{x\to 0}{\frac{sin{ax}}{sinbx}}\)
        (c) \(\lim\limits_{x\to 0}{\frac{\frac{1}{x}+\frac{1}{2}}{x+2}}\)                (d) \(\lim\limits_{x\to 0}{\frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}}\)

4. Find \(\lim\limits_{x\to 0}{f(x)}\) and \(\lim\limits_{x\to 1}{f(x)}\), where\(f(x)=\begin{cases}2x+3,  x\leq0 \\[2ex] 3(x+1), x\gt 0\end{cases}\)

5. If  \(f(x)=\begin{cases}mx^{2}+n, x\lt 0 \\[2ex] nx+m, 0\leq x\geq 1. \\[2ex] nx^2+m,  x\gt1\end{cases}\) For what integers m and n does both \(\lim\limits_{x\to 0}{f(x)}\) and \(\lim\limits_{x\to 1}{f(x)}\) exist?

6. Find the derivative of  the following  functions 
 (a)\(f(x) = 10x\)            (b) \(f(x) = x^2\)
 (c)\(f(x) = {x+1}{x}\)        (d) \(f(x) = tanx\)
 (e)\(f(x) = cos x\)            (f) \(f(x) = 3cot x + 5cosec x\)

7. Find the derivative of f from the first principle, where f is given by

(a) \(f(x) = \frac{2x+3}{x-2}\)           (b) \(f(x) = x+\frac{1}{x}\)
(c) \(f(x) = sinx+cosx\)    (d) \(f(x) = sin{2x}\)

8. Find the derivative of the following functions (a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)

(a) \(\frac{ax+b}{cx+d}\)     (c) \(\frac{ax+b}{px^2+qx+r}\)

(b) \(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\) (d) \((x+secx)(x-tanx)\)

(e) \(\frac{4x+5sinx}{3x+7cotx}\)    (f) \(\frac{ax^2+sinx}{p+qcosx}\)

(g) \(\frac{secx+1}{secx-1}\)     (h) \(\frac{1}{ax^2+bx+c}\)

9. Find the derivative of the function \(f(x) = 2x^2 + 3x – 5x at x =  –1\). Also prove that \(f'(0) + 3f'(-1)=0\).

10. Find the derivative at \(x = 2\) of the function \(f(x) = 3x\).

 Sandeep Gupta

Posted by Sandeep Gupta

Please share your feedback us Thank you for being a part of our community!

Special Message

Welcome to coding bihar!