Best Tutorial for Android Jetpack Compose

Android App Development

Stay ahead with the latest tools, trends, and best practices in Android development

CBSE 11 Limits and Derivatives Practice Paper

CBSE 11 Limits and Derivatives Practice Paper - Coding Bihar
CBSE 11 Limits and Derivatives Practice Paper

Limits and Derivatives

1. Find the following limits
        (a) \(\lim\limits_{x\to 1}{\frac{x^{15}-1}{x^{10}-1}}\)                (b)\(\lim\limits_{z\to 0}\frac{\sqrt{1+z}-1}{z}\)
        (c) \(\lim\limits_{x\to 1}{[x^3-x^2+1]}\)       (d)  \(\lim\limits_{x\to 2}{[x(x+2)]}\)
        (e) \(\lim\limits_{x\to 1}{[\frac{x+1}{x+5}]}\)                (f)  \(\lim\limits_{x\to 1}{[\frac{x^3-2x^2+2x}{x^2-2}]}\)

2. For any positive integer n, prove that
    \(\lim\limits_{x\to a}{\frac{x^n-a^n}{x-a}}\)

3. Evaluate

        (a) \(\lim\limits_{x\to 0}{\frac{sin4x}{sin3x}}\)                (b) \(\lim\limits_{x\to 0}{\frac{sin{ax}}{sinbx}}\)
        (c) \(\lim\limits_{x\to 0}{\frac{\frac{1}{x}+\frac{1}{2}}{x+2}}\)                (d) \(\lim\limits_{x\to 0}{\frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}}\)

4. Find \(\lim\limits_{x\to 0}{f(x)}\) and \(\lim\limits_{x\to 1}{f(x)}\), where\(f(x)=\begin{cases}2x+3,  x\leq0 \\[2ex] 3(x+1), x\gt 0\end{cases}\)

5. If  \(f(x)=\begin{cases}mx^{2}+n, x\lt 0 \\[2ex] nx+m, 0\leq x\geq 1. \\[2ex] nx^2+m,  x\gt1\end{cases}\) For what integers m and n does both \(\lim\limits_{x\to 0}{f(x)}\) and \(\lim\limits_{x\to 1}{f(x)}\) exist?

6. Find the derivative of  the following  functions 
 (a)\(f(x) = 10x\)            (b) \(f(x) = x^2\)
 (c)\(f(x) = {x+1}{x}\)        (d) \(f(x) = tanx\)
 (e)\(f(x) = cos x\)            (f) \(f(x) = 3cot x + 5cosec x\)

7. Find the derivative of f from the first principle, where f is given by

(a) \(f(x) = \frac{2x+3}{x-2}\)           (b) \(f(x) = x+\frac{1}{x}\)
(c) \(f(x) = sinx+cosx\)    (d) \(f(x) = sin{2x}\)

8. Find the derivative of the following functions (a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)

(a) \(\frac{ax+b}{cx+d}\)     (c) \(\frac{ax+b}{px^2+qx+r}\)

(b) \(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\) (d) \((x+secx)(x-tanx)\)

(e) \(\frac{4x+5sinx}{3x+7cotx}\)    (f) \(\frac{ax^2+sinx}{p+qcosx}\)

(g) \(\frac{secx+1}{secx-1}\)     (h) \(\frac{1}{ax^2+bx+c}\)

9. Find the derivative of the function \(f(x) = 2x^2 + 3x – 5x at x =  –1\). Also prove that \(f'(0) + 3f'(-1)=0\).

10. Find the derivative at \(x = 2\) of the function \(f(x) = 3x\).

*****************End****************************

Special Message

Welcome to Coding