Best Tutorial for Android Jetpack Compose

Android App Development

Stay ahead with the latest tools, trends, and best practices in Android development

CBSE 12 Mathematics Integrals MPQs

CBSE 12 Mathematics Integrals MPQs - Coding Bihar
CBSE 12 Mathematics Integrals MPQs
CBSE 12 Mathematics Integrals MPQs

2. Find the following integrals:

  1. \(\int cos2xdx\)
  2. \(\int (4e^{3x}+1)dx\)
  3. \(\int (\sqrt{x}-\frac{1}{\sqrt x})^2dx\)
  4. \(\int \frac{x^3 - x^2 +x - 1}{x-1}dx\)
  5. \(\int (\sqrt{x}(3x^2 + 2x +3)dx\)
  6. \(\int secx(secx+tanx)dx\)
  7. \(\int (\frac{sec^2x}{cosec^2x})dx\)
  8. \(\int (\frac{2-3x}{cos^2{x}})^2dx\)

3. Integrate the following functions:

  1. \(\frac{2x}{1+x^2}\)
  2. \(\frac{(logx)^2}{x}\)
  3. \(\frac{1}{x-\sqrt x}\)
  4. \(\frac{e^{2x}-1}{e^{2x}+1}\)
  5. \(\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}\)
  6. \(\frac{(1+logx)^2}{x}\)
  7. \(\frac{(x+1)(x+logx)^2}{x}\)
  8. \(\frac{cosx}{\sqrt{1+sinx}}\)

4. Integrate the following rational functions:

  1. \(\frac{x}{(x+1)(x+2)}\)
  2. \(\frac{x}{(x+1)(x+2)(x+3)}\)
  3. \(\frac{cosx}{(1-sinx)(2-sinx)}\)
  4. \(\frac{3x-1}{(x+2)^2}\)
  5. \(\frac{1}{x^4 -1{}}\)
  6. \(\frac{x^3 + x + 1}{x^2 - 1}\)
  7. \(\frac{1}{x(x^n + 1)}\)
  8. \(\frac{3x+5}{x^3 - x^2}\)

5. Evaluate the following integrals:

  1. \(\int_0^1 \frac{x}{x^2+1}dx\)
  2. \(\int_{-1}^1 {(x+1)}dx\)
  3. \(\int_3^2 \frac{1}{x}dx\)
  4. \(\int_0^{\pi/4} tanx dx\)
  5. \(\int_0^{\pi/4} (2sec^2x+x^3+2) dx\)
  6. \(\int_0^{\pi/4} sin2x dx\)
  7. \(\int_0^{\pi/4} (sin^2\frac{x}{2}- cos^2 \frac{x}{2}) dx\)
  8. \(\int_0^{\pi/4} sin2x dx\)
  9. \(\int_2^3 \frac{dx}{x^2-1}\)
6. Evaluate the integral: $$\int x^2 \, dx$$

7. Find the area under the curve: $$y = x^3$$ from x = 0 to x = 2.

8. Solve: $$\int (3x^2 + 2x + 1) \, dx$$

9. Evaluate: $$\int \sin(x) \, dx$$

10. Find the value of: $$\int e^x \, dx$$

11. Solve the integral: $$\int \frac{1}{x} \, dx$$

12. Evaluate: $$\int \cos(x) \, dx$$

13. Find the integral of the function: $$\int (x^3 - 4x + 6) \, dx$$

14. Determine the integral: $$\int \frac{1}{x^2} \, dx$$

15. Evaluate the definite integral: $$\int_0^1 (2x^3 + x^2) \, dx$$

Special Message

Welcome to Coding