100 Super Revision Test – CBSE Class 12 Determinants (2026)
This 100 Super Revision Test is designed to help you:
- Revise every important concept of Determinants
- Practice all types of questions asked in Class 12 board exams
- Strengthen your speed and accuracy
- Build confidence for both Term Exams and Pre-Boards 2026
- Properties of Determinants
- Cofactor and Minors
- Adjoint of a Matrix
- Inverse using Adjoint Method
- Applications of Determinants (Area of Triangle)
Note: Important/high-weight questions are highlighted. Try solving before checking final answers below.
- Define determinant of a square matrix.
- Find \(\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \).
- Evaluate \( \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} \).
- If two rows of a determinant are interchanged, what happens to its sign?
- If two rows are identical, what is the value of the determinant?
- Evaluate \( \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \).
- Prove that \( \begin{vmatrix} a & b \\ b & a \end{vmatrix} = a^2 - b^2 \).
- Find determinant of \( I_2 \).
- Find \( |3I_2| \).
- Find \( |0I_2| \).
- Evaluate \( \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{vmatrix} \).
- Find determinant of a diagonal matrix with diagonal entries 2, 3, 4.
- If \(|A| = 5\), find \(|2A|\).
- What happens to \(|A|\) if a row is multiplied by constant \(k\)?
- Show that determinant of upper triangular matrix equals product of its diagonal elements.
- Prove that \( \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b - a)(c - a)(c - b) \).
- Find \( \begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} \).
- Find \( \begin{vmatrix} a & b \\ c & d \end{vmatrix} \).
- For \( \begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} \), comment on its value.
- Find determinant of \( \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \).
- Find determinant of \( \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \).
- Find \( |A| \) if \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \).
- If \( |A| = 4 \), find \( |A^{-1}| \).
- Expand \( \begin{vmatrix} 2 & 1 & 0 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{vmatrix} \) along first column.
- Find determinant of \( \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix} \).
- Find determinant of a zero matrix of order 3.
- Find determinant of \( A' \) if \( |A| = 5 \).
- Show that \( |A'| = |A| \).
- If \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), find \( |A'| \).
- Find \( |AB| \) if \( |A|=2, |B|=3 \).
- Find \( |A^{-1}| \) if \( |A|=2 \).
- Find the area of triangle with vertices (1,2), (3,5), (6,7) using determinants.
- Show that points (1,2), (2,4), (3,6) are collinear using determinant.
- Find condition for collinearity of (x1, y1), (x2, y2), (x3, y3).
- If one row is multiplied by zero, what is determinant?
- Find \( \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} \).
- Find \( \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \).
- Find determinant of \( \begin{vmatrix} 1 & 0 & -2 \\ 3 & 1 & 0 \\ 0 & 2 & 1 \end{vmatrix} \).
- Find \( \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} \).
- Prove that rotation matrix determinant = 1.
- Find \( \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{vmatrix} \).
- Find \( \begin{vmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 4 & 5 & 6 \end{vmatrix} \).
- If \( |A|=k \\), find \\( |A^T| \).
- Evaluate \( \begin{vmatrix} 3 & 2 & 0 \\ 0 & 1 & 4 \\ 1 & 0 & 5 \end{vmatrix} \).
- Find determinant of \( \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix} \).
- Prove that \( |kA| = k^n|A| \) for an \(n×n\) matrix.
- Find \( |2A| \) if \( |A| = 3 \) and order of A = 2.
- Find \( |2A| \) if \( |A| = 3 \) and order of A = 3.
- Find \( |0A| \).
- Prove that determinant is linear in each row.
- Find \( |A| \) if A = [[1,2,3],[2,3,4],[3,4,5]].
- Show that if any two rows are proportional, \(|A| = 0\).
- Find \( |A| \) if \( A = [[a,b,c],[b,c,a],[c,a,b]] \).
- Find \( |A| \) if \( A = [[1,1,1],[x,y,z],[x^2,y^2,z^2]] \).
- Find \( |A| \) if \( A = [[1,p,q],[p,1,r],[q,r,1]] \).
- Find determinant of \( \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix} \).
- Find \( |A| \) for A = [[2,1,1],[1,2,1],[1,1,2]].
- Prove: \( |A| = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca) \) for \(A = [[1,1,1],[a,b,c],[a^2,b^2,c^2]]\).
- Find determinant of [[a, b+c, c+b], [b, c+a, a+c], [c, a+b, b+a]].
- Find determinant of [[1,0,-1],[0,1,0],[1,1,1]].
- Find \( |A| \) if \( A = [[1,0,1],[0,1,1],[1,1,0]] \).
- Find determinant when two rows are equal.
- Prove that \( |A| = 0 \) if one row is sum of other two.
- Find determinant of \( [[2,3,4],[0,1,5],[0,0,6]] \).
- Find determinant of \( [[1,2,3],[2,4,6],[3,6,9]] \).
- Prove that \( |A| = 0 \) if rows are proportional.
- Find \( |A| \) when \( A = [[1,2,3],[4,5,6],[7,8,10]] \).
- Find \( |A| \) for \( A = [[x,1,1],[1,x,1],[1,1,x]] \).
- Find determinant of \( [[2,1,0],[1,2,1],[0,1,2]] \).
- Find determinant of [[1,2,3],[1,3,4],[1,4,5]].
- Find determinant of \( [[x,0,0],[0,x,0],[0,0,x]] \).
- If \( |A| = 2 \), find \( |3A^{-1}| \).
- Find determinant of [[2,0,1],[3,4,0],[1,2,3]].
- Find determinant of [[1,3,1],[0,2,4],[2,1,3]].
- Find determinant of [[1,0,0],[2,3,0],[1,4,5]].
- Find determinant of [[0,1,2],[1,2,3],[4,5,6]].
- Find determinant of [[1,2,1],[3,2,1],[1,1,1]].
- Find determinant of [[x,1,0],[1,x,1],[0,1,x]].
- Find determinant of [[1,1,1],[1,2,3],[1,3,6]].
- Find \( |A| \) when \( A = [[a,b,c],[b,c,a],[c,a,b]] \).
- Find \( |A| \) for A = [[1,p,q],[p,1,r],[q,r,1]].
- Find determinant of [[a,b,1],[b,1,a],[1,a,b]].
- Find \( |A| \) for [[1,2,3],[0,1,4],[5,6,0]].
- Find \( |A| \) for [[a,b,0],[0,a,b],[b,0,a]].
- If \( A = [[1,1,1],[1,2,3],[1,4,9]] \), find \( |A| \).
- Find determinant of [[x,1,1],[1,x,1],[1,1,x]].
- Find determinant of [[1,a,a^2],[1,b,b^2],[1,c,c^2]].
- Find determinant of [[1,2,3],[2,4,5],[3,5,7]].
- Find determinant of [[2,1,0],[0,3,1],[0,0,4]].
- Find determinant of [[1,2,0],[0,1,3],[4,0,1]].
- Find determinant of [[1,0,2],[3,1,4],[0,2,5]].
- Find determinant of [[2,1,3],[0,4,5],[1,0,6]].
- Find determinant of [[3,0,1],[1,2,0],[4,1,5]].
- If \(|A| = 3\) and \(|B| = 2\), find \(|A^2B'|\).
- If \(A\) is singular, what is \(|A|\)?
- If \(|A| = 0\), what type of matrix is A?
- If \(|A| = 1\), what type of transformation does it represent?
- Find \(|\nabla f|\) using determinant for function f(x,y,z).
Final Answers (Key):
- Definition based.
- = -2
- = 1
- Sign changes.
- 0
- 4
- \(a^2 - b^2\)
- 1
- 9
- 0
- -38
- 24
- 8
- k|A|
- Product of diagonals.
- \((b-a)(c-a)(c-b)\)
- \(x^2 - 1\)
- \(ad - bc\)
- 0
- 0
- 1
- 2
- 1/4
- 4
- 2
- 0
- 5
- 5
- 6
- 6
- 1/2
- Area = 0
- 0 (collinear)
- Formula determinant = 0
- 0
- 0
- 11
- 1
- 1
- -38
- 36
- k|A|
- 12
- 24
- 0
- True
- 0
- 0
- 6
- 8
- \((a+b+c)(a^2+b^2+c^2-ab-bc-ca)\)
- 0
- 2
- 1
- 0
- 72
- 0
- 0
- 3
- \(x^3-3x+2\)
- 4
- 3
- 2
- 0
- \(27\)
- \(x^3 - 3x + 2\)
- \((b-a)(c-a)(c-b)\)
- 5
- 24
- 18
- 7
- 9
- 5
- 12
- 18
- 12
- 12
- 1
- 0
- Singular
- Identity transformation
- Jacobian determinant based
๐ง Revise these daily before exams — they cover all CBSE 2026 Determinants concepts: properties, expansion, triangle area, and matrix relation.
